A Unifying Approach to Edge-valued and Arithmetic Transform Decision Diagrams
نویسندگان
چکیده
This paper shows that binary decision diagrams (BDDs) and their generalizations are not only representations of switching and integer-valued functions, but also Fourier-like series expansions of them. Furthermore, it shows that edge-valued binary decision diagrams (EVBDDs) are related to arithmetic transform decision diagrams (ACDDs), which are the integer counterparts of the functional decision diagrams (FDDs). Finally, it shows that the complexity of multi-terminal binary decision diagrams (MTBDDs), EVBDDs and ACDDs of a function f depends on the structure of the truth-vector of f , partial arithmetic transform spectra of f and the arithmetic transform spectrum of f , respectively.
منابع مشابه
Arithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملModel Checking with Edge-valued Decision Diagrams
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algor...
متن کاملInterval-valued intuitionistic fuzzy aggregation methodology for decision making with a prioritization of criteria
Interval-valued intuitionistic fuzzy sets (IVIFSs), a generalization of fuzzy sets, is characterized by an interval-valued membership function, an interval-valued non-membership function.The objective of this paper is to deal with criteria aggregation problems using IVIFSs where there exists a prioritization relationship over the criteria.Based on the ${L}$ukasiewicz triangular norm, we first p...
متن کاملSymbolic Reasoning with Weighted and Normalized Decision Diagrams
Several variants of Bryant’s ordered binary decision diagrams have been suggested in the literature to reason about discrete functions. In this paper, we introduce a generic notion of weighted decision diagrams that captures many of them and present criteria for canonicity. As a special instance of such weighted diagrams, we introduce a new BDD-variant for real-valued functions, called normaliz...
متن کاملEdge-Shifted Decision Diagrams for Multiple-Valued Logic
Symbolic data structures for multi-valued logics are useful in a number of applications, from model-checking to circuit design and switch-level circuit verification. Such data structures are referred to as decision diagrams, and are typically considered effective if they are small, i.e., common co-factors of a function are shared, and canonical, i.e., given a variable ordering, there is a uniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000